
Version 4.1.2 for
Mainframes

Configuring the SMARTS
Environment

This document applies to Natural Version 4.1.2 for Mainframes and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent
release notes or new editions.

© Copyright Software AG 2003
All rights reserved.

The name Software AG and/or all Software AG product names are either trademarks or registered
trademarks of Software AG. Other company and product names mentioned herein may be trademarks of
their respective owners.

Table of Contents
............. 1Configuring the SMARTS Environment
............. 1Configuring the SMARTS Environment
............. 2Overview of Configuration Parameters
............. 2Overview of Configuration Parameters
............... 5SMARTS Configuration Sources
............... 5SMARTS Configuration Sources
.................... 5OS/390
................... 5VSE/ESA
............ 6Sample Configuration Member PXANCONF
............ 6Sample Configuration Member PXANCONF
................... 7Sysparm Format
.................. 7Sysparm Format
............. 8SMARTS POSIX Layer Configuration
............. 8SMARTS POSIX Layer Configuration
............ 8SMARTS POSIX Log and Trace Parameters
............. 10SMARTS POSIX Tracing Parameters
............. 19SMARTS POSIX Recovery Parameters
.......... 20SMARTS POSIX Statistics Collection Parameters
............ 22SMARTS POSIX Miscellaneous Parameters
................ 28Standard CDI Definitions
.......... 35Configuration of the SMARTS Server Environment
.......... 35Configuration of the SMARTS Server Environment
............ 35SMARTS Server Configuration Parameters
............. 55SMARTS Global Environment Variables
............. 55SMARTS Global Environment Variables
................. 55File Requirements
.................. 55File Processing
................... 56Examples
.............. 57Configuring Resources for SMARTS
.............. 57Configuring Resources for SMARTS

i

Configuring the SMARTS EnvironmentConfiguring the SMARTS Environment

Configuring the SMARTS Environment
This documentation provides configuration information for SMARTS environments. It also describes
global environment variables that can be set for the whole SMARTS address space.

The configuration parameters are described under the following headings:

Overview of Configuration Parameters

SMARTS Configuration Sources

Sample Configuration Member PXANCONF

Sysparm Format

SMARTS POSIX Layer Configuration

SMARTS Server Environment Configuration

SMARTS Global Environment Variables

Configuring Resources

Configurable Tables

1

Configuring the SMARTS EnvironmentConfiguring the SMARTS Environment

Overview of Configuration Parameters
SMARTS POSIX Log and Trace Parameters

LOG_DATA_COLL_ELEMENT_SIZE
LOG_DATA_COLL_BLOCK_SIZE
LOG_DATA_COLL_BLOCK_COUNT
TRACE_DATA_COLL_ELEMENT_SIZE
TRACE_DATA_COLL_BLOCK_SIZE
TRACE_DATA_COLL_BLOCK_COUNT

SMARTS POSIX Tracing Parameters

SYSTEM_TRACE_LEVEL
TRACE_SYSTEM_INCLUDE
TRACE_SYSTEM_EXCLUDE
TRACE_FUNCTION_INCLUDE
TRACE_FUNCTION_EXCLUDE
TRACE_GROUP_INCLUDE
TRACE_GROUP_EXCLUDE
TRACE_OUTPUT_START_AFTER
TRACE_OUTPUT_STOP_AFTER
TRACE_CFUNC_PARMS
TRACE_CFUNC_PLIST

SMARTS POSIX Recovery Parameters

ABEND_RECOVERY
THREAD_ABEND_RECOVERY

SMARTS POSIX Statistics Collection Parameters

STATISTICS_INCLUDE
STATISTICS_EXCLUDE
STATISTICS_OPTION

SMARTS POSIX Miscellaneous Parameters

ASCII
CDI_DRIVER
ENVIRONMENT_VARIABLES
HOSTS_FILE
NETWORKS_FILE
PROTOCOLS_FILE
SERVICES_FILE
FLOATING_POINT
LOAD_DLL
LOG
MESSAGE_CASE
MOUNT_FS
PROCESS_HEAP_SIZE

2

Configuring the SMARTS EnvironmentOverview of Configuration Parameters

SECURITY_INTERFACE
SYSTEM_ID
UNSUPPORTED_FUNCTION_LIST
VSE_PRINTER_SYSNO
ZAP_LIST

Standard CDI Definitions

Support for Console Processing (All Environments)
Support for IBM OS/390 File Subsystem
Support for IBM VSE File Subsystem
Support for the Portable File System (OS/390)
Support for IBM OE TCP/IP Stack (OS/390)
Support for Connectivity Systems TCP/IP Stack (VSE)
Support for Inter Process Communications Pipes (All Environments)

SMARTS Server Configuration Parameters

ADABAS-BP
ADACALLS
ADADBID
ADALIMIT
ADAROLL
ADASVC
APPLYMOD
BUFFERPOOL
DUMPDSN
EOJ-VER
GLOBAL-MAXENQS
INIT-PGM
INSTALLATION
MAXENQS
MAXTASKS
MESSAGE-ID
PATCHAR
PROGRAMISD
RESIDENTPAGE
ROLL-BUFFERPOOL
SAVEPOOL
SAVEPOOL-ANY
SECSYS
SECSYS-APPL
SERVER
STARTUPPGM
TASK-GROUP
THREAD-GROUP
THSIZEABOVE
TIBTAB
TRACECLASS
TRACEOPTION
TRACETABLE

3

Overview of Configuration ParametersConfiguring the SMARTS Environment

WORKLOAD-AVERAGE
WORKLOAD-MAXIMUM

4

Configuring the SMARTS EnvironmentOverview of Configuration Parameters

SMARTS Configuration Sources
The configuration information for SMARTS is currently located in two different sources:

one source holds the SMARTS POSIX layer configuration information, which applies to all
environments where SMARTS runs, including the SMARTS server environment; and

the other source holds the SMARTS server environment configuration information, which applies
only to the server environment.

From the configuration sources, Software AG recommends that you build one central member for use in
all environments. Use an isolated environment to make or test changes.

Any attempt to provide a configuration module that was not generated according to the instructions
provided causes unpredictable results.

The parameters (sysparms) defined in the SYSPARM/SYSIPT dataset are read and processed during
initialization.

POSIX parameters are valid for SMARTS client and server environments. SMARTS server parameters
are not valid in client environments and will cause the system to display the warning message

Unknown keyword = xxxxxxxx

- where xxxxxxxx is the keyword that was not recognized.

OS/390
Under OS/390, the SMARTS environment is configured using the following partitioned dataset (PDS)
members delivered in the APSvrs.SOURCE dataset:

PXANCONF - POSIX
RJANPARM - SMARTS server

These parameter members are allocated to the SYSPARM DD statement within the SMARTS execution
environment.

VSE/ESA
Under VSE/ESA, the SMARTS environment is configured using the following members delivered in the
APSvrs sublibrary:

PXANCONF.P - POSIX
RJANPARM.P - SMARTS server

These parameter members are allocated to SYSIPT within the SMARTS execution environment.

5

SMARTS Configuration SourcesConfiguring the SMARTS Environment

Sample Configuration Member PXANCONF
Under OS/390, the APSvrs.USERSRCE dataset contains a sample PXANCONF member.

Under VSE/ESA, the APSvrs sublibrary contains a sample member PXANCONF.P.

If required, PXANCONF may be copied and modified to produce a number of different configuration
options. These options can then be selected by operators when SMARTS is started.

Below is a sample configuration member for OS/390:

*
INSTALLATION=-ADATCP-
----------------- Work Load Definitions -----------------------------
WORKLOAD-AVERAGE=50
WORKLOAD-MAXIMUM=200
----------------- SERVERS ---------------------------------
SERVER=(OPERATOR,TLINOPER)
*
SERVER=(POSIX,PAENKERN) POSIX SERVER DEFINITION
*
APPLYMOD=73
APPLYMOD=(92,NO)
*
* ADATCP Definitions
*
RESIDENTPAGE=ADATCP
ADASVC=249
*
* SMARTS Parameters
*
CDI_DRIVER=(’file,PAAMFSIO’)
CDI_DRIVER=(’tcpip,PAAOSOCK)
SYSTEM_TRACE_LEVEL=1
TRACE_GROUP_INCLUDE=SIGNAL
TRACE_SYSTEM_INCLUDE=MUTEX

6

Configuring the SMARTS EnvironmentSample Configuration Member PXANCONF

Sysparm Format
Sysparms must be entered according to established keyword coding conventions.

When read from SYSPARM/SYSIPT, each statement must begin in column one. A maximum of 80
characters per statement is allowed.

More than one sysparm is allowed per statement, but successive sysparms must be separated by a comma,
and the statement itself must be terminated by a blank. For example:

KEYWORD1=value1,KEYWORD2=value2...,KEYWORD9=value9

Continuation statements are allowed: a statement in parentheses may be wrapped after a comma. For
example:

KEYWORD=(value1, comment: this statement is continued on the next line
 value2)

Multiple statements for the same keyword are permissible. Depending on the keyword, specifying the
same keyword again may

override a previous specification (example: SYSTEM_TRACE_LEVEL or PATCHAR); or

add another member to a list (example: CDI_DRIVER or RESIDENTPAGE).

When entered as PARM parameters in OS/390 or VSE/ESA, standard PARM entry conventions apply.
Each keyword must be entered in its entirety in any given statement in the format:

KEYWORD=value

All keyword values may be either fully spelled out or abbreviated. Software AG recommends that you
always use the full spelling. Abbreviations must consist of the minimum number of characters required to
uniquely differentiate a given keyword from any other acceptable keyword.

If a keyword option is omitted, the default value takes effect. If column one of any statement contains an
asterisk, that statement is treated as a comment.

For most keywords, the default value should normally be used.

7

Sysparm FormatConfiguring the SMARTS Environment

SMARTS POSIX Layer Configuration
The parameters described in this section are POSIX parameters only.

The POSIX start-up options for the SMARTS environment are specified as keyword parameters (so-called
"sysparms"). These SYSPARM (OS/390) or SYSIPT (VSE/ESA) specifications must be entered
according to established keyword coding conventions. See Sysparm Format

The description of parameters is organized under the following headings:

SMARTS POSIX Log and Trace Parameters

SMARTS POSIX Tracing Parameters

SMARTS POSIX Recovery Parameters

SMARTS POSIX Statistics Collection Parameters

SMARTS POSIX Miscellaneous Parameters

Standard CDI Definitions

SMARTS POSIX Log and Trace Parameters
Both the Logging and Tracing configurations are controlled by three parameters respectively. They define
the ’size’ of the Data Collection structures. Data Collection is a SMARTS mechanism for buffering output
in dataspaces to reduce the perfomance implications of outputting large volumes of Trace or Log records.
If any of the following parameters are set to zero or not specified, Data Collection will not occur and all
data will be output directly to the DD names specified, with possible performance degradation resulting.

LOG_DATA_COLL_ELEMENT_SIZE

Parameter Use
Possible
Values

Default

LOG_DATA_COLL_ELEMENT_SIZE
The size (in bytes) of a data
element within the log data
collection block.

16 -
32767

0

The element contains the data collection prefix area (DCPA) in the first 64 bytes; followed by
the data collected by the user.

LOG_DATA_COLL_BLOCK_SIZE

8

Configuring the SMARTS EnvironmentSMARTS POSIX Layer Configuration

Parameter Use Possible Values Default

LOG_DATA_COLL_BLOCK_SIZE

The size
of a
block
within
the log
data
collection
data
space.

LOG_DATA_COLL_ELEMENT_SIZE
- 32767

1024

The size of the block will determine how many elements it will contain. The more elements a
block contains, the less IO required to harden the output, as the data is written out by block.

LOG_DATA_COLL_BLOCK_COUNT

Parameter Use
Possible
Values

Default

LOG_DATA_COLL_BLOCK_COUNT
Number of blocks in the
log data collection data
space.

1 - n where

n * blocksize
<= 2GB

8

The block count will determine how many blocks the data collection structure will contain. This
in turn determines how many concurrent threads the data collections mechanism can process
concurrently.

If statistics are being collected and the data is to be hardened (STATISTICS_INCLUDE=LOG),
then the element and block values will be overridden by the length of the longest statistics
block, if greater than the block value specified.

TRACE_DATA_COLL_ELEMENT_SIZE

Parameter Use
Possible
Values

Default

TRACE_DATA_COLL_ELEMENT_SIZE
The size (in bytes) of a data
element within the trace
data collection block.

16 -
32767

128

The element contains

the data collection prefix area (DCPA) in the first 64 bytes; followed by

the data collected by the user.

TRACE_DATA_COLL_BLOCK_SIZE

9

SMARTS POSIX Layer ConfigurationConfiguring the SMARTS Environment

Parameter Use Possible Values Default

TRACE_DATA_COLL_BLOCK_SIZE

The size
of a
block
within
the trace
data
collection
data
space.

TRACE_DATA_COLL_ELEMENT_SIZE
- 32767

1024

The size of the block will determine how may elements it will contain. The more elements a
block contains, the less IO required to harden the output, as the data is written out by block.

TRACE_DATA_COLL_BLOCK_COUNT

Parameter Use
Possible
Values

Default

TRACE_DATA_COLL_BLOCK_COUNT
Number of blocks in the
trace data collection
data space.

1 - n
where
n *
blocksize <=
2 GB

8

The block count will determine how may blocks the data collection structure will contain. This
in turn determines how many concurrent threads the data collections mechanism can process
concurrently.

SMARTS POSIX Tracing Parameters
Tracing parameters are processed in the order in which they are entered. No effort is made to process all
includes before excludes or vice versa.

SYSTEM_TRACE_LEVEL

Parameter Use
Possible
Values

Default

SYSTEM_TRACE_LEVEL
Granularity of tracing to be
collected.

1 - 5 1

Five (5) levels of tracing are possible; level 1 provides the least amount of tracing information,
and level 5 provides the maximum amount of tracing information.

10

Configuring the SMARTS EnvironmentSMARTS POSIX Layer Configuration

Use the following guidelines to determine what to trace for a given trace level:

Level Description

1

The minimum amount of information needed to identify why the trace occurred
and the event in question. Only main events are traced. The trace information is
formatted to fit on one print line. Use this level to gather trace information with a
minimum of overhead.

2 Same as level 1 except that all events are traced.

3
Same as level 2 with additional trace records for each event that may include
parameter lists and single values including pointers. Control blocks are not
included.

4
Same as level 3 with additional trace records for each event that may include
control blocks or parts of control blocks that are relevant to the trace event.

5
Same as level 4 with all relevant information related to the trace event: control
blocks, buffers, and any other data that may be useful. This level will have a
severe impact on system performance.

When the APSTRCE identifier is provided in a SMARTS job stream, the trace data collection
mechanism attempts to open the file identified by APSTRCE and write unformatted trace data to it. The
file is generally a blocked dataset with the ability to hold block-size/element-size records per block.

The element size determines the amount of data from a single request that the trace collection
mechanism can handle. If the element size is set to 128 bytes, for example, the collection mechanism
accepts a DCPA and up to 64 bytes of additional information. If the DCPALEN field value is greater than
64 bytes in this case, anything after the 64th byte of information in the additional data is not logged.
Although the element size can be increased, the larger the element size, the fewer the elements that will fit
into the trace buffer and the greater the impact on system performance.

When the identified APSTRCF is provided in the SMARTS job stream, the trace mechanism
formats the provided DCPA and any additional data in a generic format and writes the formatted data to
the dataset identified by APSTRCF. The trace logic must format and write this data immediately; thus if
large amounts of data are traced, system performance slows significantly. Each additional piece of data to
be written slows performance even more. You can manage the situation by writing the code that builds
requests to the trace subsystem so that it properly restricts the amount of data that is traced.

TRACE_SYSTEM_INCLUDE

Parameter Use
Possible
Values

Default

TRACE_SYSTEM_INCLUDE Specifies system trace options to
include in trace.

see table none

One trace option may be specified per parameter. To activate more than one option, the
parameter must be specified multiple times:

TRACE_SYSTEM_INCLUDE = CFUNCTION
TRACE_SYSTEM_INCLUDE = CONDVAR
TRACE_SYSTEM_INCLUDE = MUTEX

11

SMARTS POSIX Layer ConfigurationConfiguring the SMARTS Environment

Value Description

CFUNCTION
Trace entry to and exit from each C function in the
application running on SMARTS.

CONDVAR
Trace all activity in the SMARTS system related to
condition variables.

MUTEX
Trace all activity in the SMARTS system related to
mutex.

PTHREADS
Trace all activity in the SMARTS system related to
pthreads.

INDEPENDENT_SOCKETS Trace generic sockets activity.

STACK_DEPENDENT_SOCKETS Trace low level stack requests.

CONTAINER_IO
Trace all internal IO calls to SAGIOS (inactive for
BS2000).

ALL Trace all of the above parameters.

TRACE_SYSTEM_EXCLUDE

Parameter Use Possible Values Default

TRACE_SYSTEM_EXCLUDE

Specifies
system trace
parameters to
exclude in the
trace.

see tables and discussion for
TRACE_SYSTEM_INCLUDE

none

TRACE_FUNCTION_INCLUDE

Parameter Use
Possible
Values

Default

TRACE_FUNCTION_INCLUDE Include a specific function in
the trace.

function
name

none

The function name is case-sensitive.

A list of functions with tracing switched on is produced unless the list contains more than 50%
of all functions. In that case, a list of the functions with tracing switched off is produced.

TRACE_FUNCTION_EXCLUDE

Parameter Use
Possible
Values

Default

TRACE_FUNCTION_EXCLUDE Exclude a specific function
from the trace.

function
name

none

12

Configuring the SMARTS EnvironmentSMARTS POSIX Layer Configuration

The function name is case-sensitive.

TRACE_GROUP_INCLUDE

Parameter Use Possible Values Default

TRACE_GROUP_INCLUDEInclude a specific group of
functions in the trace.

see table of
groups | ALL

none

Value Description

ALL Switch tracing on for all functions.

TRACE_GROUP_EXCLUDE

Parameter Use
Possible
Values

Default

TRACE_GROUP_EXCLUDEExclude a specific group of
functions from the trace.

table of groups
| ALL

none

Value Description

ALL Switch tracing off for all functions.

Table of Tracing Groups

Group Functions

ASYNC_IO
aio_cancel, aio_error, aio_fsync, aio_read, aio_return,
aio_suspend, aio_write, lio_listio

DATABASE
dbm_clearerr, dbm_close, dbm_delete, dbm_error, dbm_fetch,
dbm_firstkey, dbm_nextkey, dbm_open, dbm_store

DEVICE grantpt, isatty, ptsname, unlockpt

FILE_
DIRECTORY

__check, access, basename, chdir, chmod, chown, chroot, close,
closedir, creat, dirname, dlclose, dlerror, dlopen, dlsym, dup, dup2,
fattach, fchdir, fchmod, fchown, fcntl, fdatasync, fdetach, fnmatch,
fpathconf, fstat, fstatvfs, fsync, ftruncate, ftw, getcwd,
getdtablesize, getwd, glob, globfree, lchown, link, lockf, lseek,
lstat, mkdir, mkfifo, mknod, mkstemp, mktemp, nftw, open,
opendir, pathconf, pwrite, read, readdir, readdir_r, readlink, readv,
realpath, remove, rename, rewinddir, rmdir, seekdir, stat, statvfs,
symlink, sync, telldir, truncate, umask, unlink, utime, utimes,
write, writev, flockfile, pread, tempnam, tmpfile, tmpnam,
ttyname, ttyname_r

INTER_
PROCESS_COMMS execl, execle, execlp, execv, execve, execvp, fork, ftok, pipe

13

SMARTS POSIX Layer ConfigurationConfiguring the SMARTS Environment

Group Functions

INTERNAL

__aett, __eatt, __xlt, apslog, apstrace, ENVINIT, ENVTERM,
EXTATTCH, EXTCDICHCK, EXTCDICNCL, EXTCDISLCT,
EXTDEL, EXTDETCH, EXTFREEG, EXTFREET, EXTFSIOS,
EXTGETG, EXTGETT, EXTLOAD, EXTMSG, EXTOPCMD,
EXTPOST, EXTPPCBG, EXTPPCBS, EXTTRACE, EXTWAIT,
EXTWAITL, hlli, SAGIOR

IO

cfgetispeed, cfgetospeed, cfsetispeed, cfsetospeed, clearerr,
ctermid, cuserid, delenv, fclose, fdopen, feof, ferror, fflush, fgetc,
fgetpos, fgets, fgetwc, fgetws, fileno, flockfile, fmtmsg, fopen,
fprintf, fputc, fputs, fputwc, fputws, fread, freopen, fscanf, fseek,
fseeko, fsetpos, ftell, ftello, ftrylockfile, funlockfile, fwide,
fwprintf, fwrite, getc, getc_unlocked, getchar, getchar_unlocked,
getmsg, getopt, getpass, gets, getsubopt, getw, getwc, getwchar,
ioctl, isastream, optarg, pclose, poll, popen, pread, printf, putc,
putc_unlocked, putchar, putchar_unlocked, putmsg, putpmsg, puts,
putw, rewind, scanf, select, setbuf, setvbuf, snprintf, sprintf,
sscanf, stdin, system, tcdrain, tcflow, tcflush, tcgetattr, tcgetsid,
tcsendbreak, tcsetattr, ungetc, vfprintf, vprintf, vsnprintf, vsprintf,
putwc, putwchar, swprintf, swscanf, tempnam, tmpfile, tmpnam,
ttyname, ttyname_r, ungetwc, vfwprintf, vswprintf, vwprintf,
wprintf, wscanf

JUMP _longjmp, _setjmp, longjmp, setjmp, siglongjmp, sigsetjmp

LANGUAGE_
LOCALE

localeconv, nl_langinfo, setlocale

LOGGING closelog, openlog, setlogmask, syslog

MATH

abs, acos, acosh, asin, asinh, atan, atan2, atanh, cbrt, ceil, cos,
cosh, div, drand48, erand48, erf, erfc, exp, expm1, fabs, floor,
fmod, frexp, gamma, hypot, ilogb, initstate, isnan, j0, j1, jn,
jrand48, labs, lcong48, ldexp, ldiv, lgamma, log, log10, log1p,
logb, lrand48, modf, mrand48, nextafter, nrand48, pow, rand,
rand_r, random, remainder, rint, scalb, seed48, setstate, signgam,
sin, sinh, sqrt, srand, srand48, srandom, tan, tanh, y0, y1, yn

MEMORY

brk, bzero, calloc, free, getpagesize, malloc, memccpy, memchr,
memcmp, memcpy, memmove, memset, mlock, mlockall, mmap,
mprotect, msync, munlock, munlockall, munmap, realloc, sbrk,
shm_open, shm_unlink, shmat, shmctl, shmdt, shmget, valloc,
bcmp, bcopy

MESSAGES
catclose, catgets, catopen, mq_close, mq_getattr, mq_notify,
mq_open, mq_receive, mq_send, mq_setattr, mq_unlink, msgctl,
msgget, msgrcv, msgsnd, perror, putmsg, putpmsg

MISCELLANEOUS
__environ, __errno, _assert, clrenv, confstr, getenv, iconv,
iconv_close, iconv_open, putenv, qsort, swab, sysconf, ualarm,
uname, usleep, wordexp, wordfree

14

Configuring the SMARTS EnvironmentSMARTS POSIX Layer Configuration

Group Functions

NETWORK_
SOCKETS

__h_errno, accept, bind, connect, endhostent, endnetent,
endprotoent, endservent, gethostbyaddr, gethostbyname,
gethostent, gethostid, gethostname, getnetbyaddr, getnetbyname,
getnetent, getpeername, getprotobyname, getprotobynumber,
getprotoent, getservbyname, getservbyport, getservent,
getsockname, getsockopt, givesocket, htonl, htons, inet_addr,
inet_lnaof, inet_makeaddr, inet_netof, inet_network, inet_ntoa,
listen, ntohl, ntohs, recv, recvfrom, recvmsg, send, sendmsg,
sendto, sethostent, setnetent, setprotoent, setservent, setsockopt,
shutdown, socket, socketpair, takesocket

PROCESS

_exit, _spawn, atexit, exit, getegid, geteuid, getgid, getgroups,
getlogin, getlogin_r, getpgid, getpgrp, getpid, getppid, getsid,
getuid, nice, setegid, seteuid, setgid, setpgid, setpgrp, setregid,
setreuid, setsid, setuid, spawnl, spawnle, spawnlp, spawnv,
spawnve, spawnvp, tcgetpgrp, tcsetpgrp, ulimit, vfork, wait,
waitid, waitpid

15

SMARTS POSIX Layer ConfigurationConfiguring the SMARTS Environment

Group Functions

PTHREAD

pause, pthread_atfork, pthread_attr_destroy,
pthread_attr_getdetachstate, pthread_attr_getguardsize,
pthread_attr_getinheritsched, pthread_attr_getschedparam,
pthread_attr_getschedpolicy, pthread_attr_getscope,
pthread_attr_getstackaddr, pthread_attr_getstacksize,
pthread_attr_init, pthread_attr_setdetachstate,
pthread_attr_setguardsize, pthread_attr_setinheritsched,
pthread_attr_setschedparam, pthread_attr_setschedpolicy,
pthread_attr_setscope, pthread_attr_setstackaddr,
pthread_attr_setstacksize, pthread_cancel, pthread_cleanup_pop,
pthread_cleanup_push, pthread_cond_broadcast,
pthread_cond_destroy, pthread_cond_init, pthread_cond_signal,
pthread_cond_timedwait, pthread_cond_wait,
pthread_condattr_destroy, pthread_condattr_getpshared,
pthread_condattr_init, pthread_condattr_setpshared,
pthread_create, pthread_detach, pthread_equal, pthread_exit,
pthread_getconcurrency, pthread_getschedparam,
pthread_getspecific, pthread_join, pthread_key_create,
pthread_key_delete, pthread_mutex_destroy,
pthread_mutex_getprioceiling, pthread_mutex_init,
pthread_mutex_lock, pthread_mutex_setprioceiling,
pthread_mutex_trylock, pthread_mutex_unlock,
pthread_mutexattr_destroy, pthread_mutexattr_getprioceiling,
pthread_mutexattr_getprotocol, pthread_mutexattr_getpshared,
pthread_mutexattr_gettype, pthread_mutexattr_init,
pthread_mutexattr_setprioceiling, pthread_mutexattr_setprotocol,
pthread_mutexattr_setpshared, pthread_mutexattr_settype,
pthread_once, pthread_rwlock_destroy, pthread_rwlock_init,
pthread_rwlock_rdlock, pthread_rwlock_tryrdlock,
pthread_rwlock_trywrlock, pthread_rwlock_unlock,
pthread_rwlock_wrlock, pthread_rwlockattr_destroy,
pthread_rwlockattr_getpshared, pthread_rwlockattr_init,
pthread_rwlockattr_setpshared, pthread_self,
pthread_setcancelstate, pthread_setcanceltype,
pthread_setconcurrency, pthread_setschedparam,
pthread_setspecific, pthread_testcancel, pthread_kill,
pthread_sigmask

PWD_GRP_ACC

endgrent, endpwent, endutxent, getgrent, getgrgid, getgrgid_r,
getgrnam, getgrnam_r, getpmsg, getpwent, getpwnam,
getpwnam_r, getpwuid, getpwuid_r, getutxent, getutxid,
getutxline, pututxline, setgrent, setpwent, setutxent, ttyslot

REGULAR_
EXPRESSIONS

advance, compile, loc1, locs, re_comp, re_exec, regcmp, regcomp,
regerror, regex, regexec, regexp, regfree, step

RESOURCES getpriority, getrlimit, getrusage, setpriority, setrlimit

SCHEDULING
sched_get_priority_max, sched_get_priority_min,
sched_getparam, sched_getscheduler, sched_rr_get_interval,
sched_setparam, sched_setscheduler, sched_yield

16

Configuring the SMARTS EnvironmentSMARTS POSIX Layer Configuration

Group Functions

SEARCH
bsearch, hcreate, hdestroy, hsearch, insque, lfind, lsearch, remque,
tdelete, tfind, tsearch, twalk

SEMAPHORE
sem_close, sem_destroy, sem_getvalue, sem_init, sem_open,
sem_post, sem_trywait, sem_unlink, sem_wait, semctl, semget,
semop

SIGNAL

abort, alarm, bsd_signal, kill, killpg, pthread_kill,
pthread_sigmask, raise, sigaction, sigaddset, sigaltstack, sigdelset,
sigemptyset, sigfillset, sighold, sigignore, siginterrupt,
sigismember, signal, sigpause, sigpending, sigprocmask, sigqueue,
sigrelse, sigset, sigstack, sigsuspend, sigtimedwait, sigwait,
sigwaitinfo

STRING

a64l, atof, atoi, atol, bcmp, bcopy, crypt, ecvt, encrypt, fcvt, ffs,
gcvt, index, l64a, rindex, setkey, strcasecmp, strcat, strchr, strcmp,
strcoll, strcpy, strcspn, strdup, strerror, strfmon, strftime, strlen,
strncasecmp, strncat, strncmp, strncpy, strpbrk, strrchr, strspn,
strstr, strtod, strtok, strtok_r, strtol, strtoul, strxfrm, -wcsftime,
wcscat, wcschr, wcscmp, wcscoll, wcscpy, wcscspn, wcslen,
wcsncat, wcsncmp, wcsncpy, wcspbrk, wcsrchr, wcsrtombs,
wcsspn, wcsstr, wcstod, wcstok, wcstol, wcstombs, wcstoul,
wcswcs, wcswidth, wcsxfrm, wcsftime

TIME

asctime, asctime_r, clock, clock_getres, clock_gettime,
clock_settime, ctime, ctime_r, daylight, difftime, ftime, getdate,
getitimer, gettimeofday, gmtime, gmtime_r, localtime, localtime_r,
mktime, nanosleep, setitimer, sleep, strptime, time, timer_delete,
timer_getoverrun, timer_gettime, timer_settime, times, tzname,
tzset, timer_create, strftime

USERCONTEXT getcontext, makecontext, setcontext, swapcontext

WIDE_CHAR

btowc, iswalnum, iswalpha, iswcntrl, iswctype, iswdigit, iswgraph,
iswlower, iswprint, iswpunct, iswspace, iswupper, iswxdigit,
mblen, mbrlen, mbrtowc, mbsinit, mbsrtowcs, mbstowcs, mbtowc,
putwc, putwchar, swprintf, swscanf, towctrans, towlower,
towupper, wcrtomb, wctob, wctomb, wctrans, wctype, wcwidth,
wmemchr, wmemcmp, wmemcpy, wmemmove, wmemset, wcscat,
wcschr, wcscmp, wcscoll, wcscpy, wcscspn, wcslen, wcsncat,
wcsncmp, wcsncpy, wcspbrk, wcsrchr, wcsrtombs, wcsspn,
wcsftime, wcsstr, wcstod, wcstok, wcstol, wcstombs, wcstoul,
wcswcs, wcswidth, wcsxfrm

XTI

t_accept, t_alloc, t_bind, t_close, t_connect, t_error, t_free,
t_getinfo, t_getprotaddr, t_getstate, t_listen, t_look, t_open,
t_optmgmt, t_rcv, t_rcvconnect, t_rcvdis, t_rcvrel, t_rcvreldata,
t_rcvudata, t_rcvuderr, t_rcvv, t_rcvvudata, t_snd, t_snddis,
t_sndrel, t_sndreldata, t_sndudata, t_sndv, t_sndvudata, t_strerror,
t_sync, t_sysconf, t_unbind

17

SMARTS POSIX Layer ConfigurationConfiguring the SMARTS Environment

TRACE_OUTPUT_START_AFTER

Parameter Use
Possible
Values

Default

TRACE_OUTPUT_START_AFTER

Start putting out trace data, after
the specified number of trace
records have been issued. This
can be used as a mechanism for
reducing the number of records
output if a large and unwieldy
output is anticipated.

Any
numeric
value

none

TRACE_OUTPUT_STOP_AFTER

Parameter Use
Possible
Values

Default

TRACE_OUTPUT_STOP_AFTER

Stop putting out trace data, after
the specified number of trace
records have been issued. This can
be used as a mechanism for
reducing the number of records
output if a large and unwieldy
output is anticipated.

Any
numeric
value

none

TRACE_CFUNC_PLIST

Parameter Use
Possible
Values

Default

TRACE_CFUNC_PLIST Specify whether C function parameter list
tracing is to be active or not.

YES ¦ NO NO

TRACE_CFUNC_PARMS

Parameter Use
Possible
Values

Default

TRACE_CFUNC_PARMS

Specify the formats of parameters of a
paticular C function to be traced. One
invocation of this keyword is required for
every different C function to be traced. The
number of parameters to be traced is
limited to 8 and only the 1st 25 bytes of the
C functions name will be traced, so
programmers should try to ensure that
function names are unique within those 25
bytes, to avoid ambiguous trace output.

See
table

none

18

Configuring the SMARTS EnvironmentSMARTS POSIX Layer Configuration

Table of C Function Parameter Tracing Options

The values for this keyword are specified as follows:

TRACE_CFUNC_PARMS=(’sample_function_name’,p1,p2,p3,...,p8,RET=pr)

where p1, p2 ... etc represent the formats of the parameters passed and pr represents the format
of the returned value. The possible values for these variables and their meanings are listed in the
table below: Variable Meaning C Character type data. S Short Integer type data. I Integer type
data. L Long Integer type data. G Long Long type data. F Floating Point type data. D Double
Precision Floating Point type data. U Long Double Precision Floating Point type data. P Pointer
type data. V Void Pointer type data. A Variable (unknown)

Variable Meaning

C Character type data.

S Short Integer type data.

I Integer type data.

L Long Integer type data.

G Long Long type data.

F Floating Point type data.

D Double Precision Floating Point type data

U Long Double Precision Floating Point type data.

P Pointer type data.

V Void Pointer type data.

A Variable (unknown)

So the example given above may have been coded as:

TRACE_CFUNC_PARMS=(“function_passing_2ints_and_a_pointer”,I,I,V,RET=I)

SMARTS POSIX Recovery Parameters
In general, the recovery parameters are always set to YES so that threads can be cancelled when SMARTS
terminates. When the recovery parameters are set to NO, SMARTS does not terminate properly.

Use the NO value only for debugging purposes when requested to do so by your Software AG technical
support representative.

ABEND_RECOVERY

Important:
Use this parameter only when requested to do so by your Software AG technical support
representative.

19

SMARTS POSIX Layer ConfigurationConfiguring the SMARTS Environment

Parameter Use
Possible
Values

Default

ABEND_
RECOVERY

Whether a recovery environment is established for a
logical process in the SMARTS environment.

YES | NO YES

NO means that SMARTS does not recover or cleanup when an ABEND occurs for a process.

THREAD_ABEND_RECOVERY

Important:
Use this parameter only when requested to do so by your Software AG technical support
representative.

Parameter Use
Possible
Values

Default

THREAD_ABEND_RECOVERY
Whether a recovery environment is
established for a pthread created in
the SMARTS environment.

YES |
NO

YES

NO means that SMARTS does not recover or cleanup when an ABEND occurs in a pthread.

SMARTS POSIX Statistics Collection Parameters
Statistics collection parameters are processed in the order in which they are entered, the last specification
encountered takes precedence.

STATISTICS_INCLUDE

Parameter Use
Possible
Values

Default

STATISTICS_INCLUDE Specifies resource to include in
statistics collection.

See table None

One resource may be specified per parameter. To activate more than one resource, the parameter
must be specified multiple times:

STATISTICS_INCLUDE = CFUNCTION
STATISTICS_INCLUDE = CONDVAR
STATISTICS_INCLUDE = MUTEX

20

Configuring the SMARTS EnvironmentSMARTS POSIX Layer Configuration

Value Description
Default number of blocks
allocated

CFUNCTION Collect statistics for C and C++
functions.

100

PFUNCTION Collect statistics for POSIX functions. 100

MUTEX Collect statistics for Mutex processing. 20

CONDVAR
Collect statistics for Condition Variable
processing.

20

FILE Collect statistics about file usage. 10

SOCKET Collect statistics about sockets usage. 10

STORAGE Collect statistics about storage usage. 1

ALL Collect all statistics. N/A

A number may be included on the STATISTICS_INCLUDE statement to override the default
number of blocks to be allocated for the given resource:

STATISTICS_INCLUDE = CFUNCTION(200)
STATISTICS_INCLUDE = CONDVAR(10)

This feature cannot be used when STATISTICS_INCLUDE=ALL is specified. As mentioned
above, the size of the SMARTS log file block/element size is determined by the storage required
by the statistics blocks, which is controlled by the number of blocks allocated. The maximum
length that can be specified for the log file is 32K and data will be lost if the maximum is
exceeded. Use the override facility to reduce this size.

STATISTICS_EXCLUDE

Parameter Use Possible Values Default

STATISTICS_EXCLUDE
Specifies resource to
exclude from
statistics collection.

See tables and discussion for
STATISTICS_INCLUDE

None

STATISTICS_OPTION

Parameter Use
Possible
Values

Default

STATISTICS_OPTION Specifies how the data will be processed
when flushed from the internal buffers.

See table None

LOG The data will be hardened using the SMARTS logging facility.

FORMAT The data will be formatted and written to the APSSTAF dataset.

21

SMARTS POSIX Layer ConfigurationConfiguring the SMARTS Environment

Both options may be specified, but on separate statements.

SMARTS POSIX Miscellaneous Parameters
ASCII

Parameter Use Possible Values Default

ASCII
Whether ASCII runtime conversion is on
and whether a translation table is to be
used..

YES | NO |
(YES,tttttttt) |
(NO,tttttttt)

NO

SMARTS executables may be compiled as ASCII or EBCDIC executables. ASCII may be
required, for example, in cases where ASCII dependencies are built into the processing
algorithm(s).

tttttttt

translation table name e.g. CP1145. Applied translation tables are:

CP1145 (Spanish)

CP871 (Icelandic)

CP273 (German)

The ASCII parameter value must match the way the executables were built. ASCII and
EBCDIC executables may not be intermixed.

C_STACK_SIZE

Important:
Use this parameter only when requested to do so by your Software AG technical support
representative.

Parameter Use
Possible
Values

Default

C_STACK_SIZE
Preallocates C stack storage for internal
use.

0 - 4095M 200K

Note:
The value may be indicated in bytes, in kilobytes with a "K" modifier, or in megabytes with an
"M" modifier; for example, 320,000 bytes may also be specified as 320K or 32M. The
C_STACK_SIZE parameter is used to preallocate a storage area for internal use.

CDI_DRIVER

22

Configuring the SMARTS EnvironmentSMARTS POSIX Layer Configuration

Parameter Use
Possible
Values

Default

CDI_DRIVER
Defines CDI protocols to SMARTS and specifies
the modules whilch implement the required
functionality.

see format
below

none

CDI driver parameters:

CDI_DRIVER=(’CDIparm1’)
CDI_DRIVER=(’CDIparm2’)
CDI_DRIVER=(’CDIparm3’)

A separate CDI_DRIVER parameter is required for each CDI driver you want to use. The order
of CDI drivers within the parameter specification does not matter. See the section Standard CDI
Definitions for more information.

Each CDI protocol driver definition takes the following form:

protocol,module,key1=value1

- where

protocol is the name of the CDI protocol being defined

module
is the name of the load module implementing this CDI protocol. This
load module must be accessible to the POSIX server environment.

key1..n/value1..nare keyword/value pairs specific to the CDI protocol driver.

For information about specifying the keyword/value pairs, refer to the implementation
documentation for the relevant CDI protocol.

A default driver will always be loaded for the ’FILE’ protocol. The driver loaded will be the
default native file I/O driver for the relevant hardware platform

ENVIRONMENT_VARIABLES

Parameter Use
Possible
Values

Default

ENVIRONMENT_VARIABLES

Names the file containing
global environment
variable definitions for
the POSIX server.

file-name
(see format
below)

no global
environment
variables

The file name uses URL-like notation as follows:

OS/390: If the file is in the PDS A.B.C member (MEMBER), specify it as

/a/b/c/member.ext

23

SMARTS POSIX Layer ConfigurationConfiguring the SMARTS Environment

(note that .ext is ignored)

VSE/ESA: If the file is Library "A", Sublibrary "B", Member "C", Member Type "D",
specify it as:

/a/b/c.d

All environments: If the file is a sequential file called X.Y.Z, specify it as

/x/y/z/

FLOATING_POINT

Parameter Use
Possible
Values

Default

FLOATING_POINT

Specify whether the SMARTS
environment should use the binary
floating point format internally
(IEEE) or the hexadecimal floating
point format (HFP)

IEEE|HFP

Depends on
support
available on
hardware
platform

If the hardware platform where SMARTS is running does not support the required instruction
set for binary floating point operations (IEEE), the FLOATING_POINT parameter value will
default to HFP. The default value should only be overridden if this is explicitly instructed in a
product’s installation notes.

Warning:
Mixing applications with IEEE and HFP floating point
arithmetic causes unpredictable results from floating point
operations.

HOSTS_FILE

Parameter Use
Possible
Values

Default

HOSTS_FILE Names the file containing the TCP/IP host
name and address table.

File name
No host name
table

The file name uses the same URL-like notation as described for the parameter
ENVIRONMENT_VARIABLES.

LOAD_DLL

Parameter Use Possible Values Default

LOAD_DLL Preloads DLL executables in the batch
environment only.

1-8 character DLL
name

none

24

Configuring the SMARTS EnvironmentSMARTS POSIX Layer Configuration

The DLL executable name is available from the execution environment; for example, STEPLIB.

LOG

Parameter Use Possible ValuesDefault

LOG
Whether messages written to APSLOG are also
written to the console.

LOG |
OPERATOR

LOG

When OPERATOR is specified, all messages are written to both APSLOG and the operator
console.

MESSAGE_CASE

Parameter Use
Possible
Values

Default

MESSAGE_CASE
Whether messages are translated to all
uppercase characters before being sent to the
console.

UPPER |
MIXED

MIXED

Normally, SMARTS messages are written as a combination of upper- and lowercase characters.

MOUNT_FS

Parameter Use
Possible
Values

Default

MOUNT_FS
Specifies the mapping of file names (for example, on
open function calls) to the underlying physical file
container or file name.

see text none

SMARTS files can be processed either directly to the underlying file system of the native
operating system or to an intermediate level known as the portable file system (PFS). Access to
the files within a PFS is transparent using the standard POSIX APIs.

Multiple PFS files are permitted as long as each file has a different protocol name and a
different container. When using multiple PFS container files, it is necessary to indicate which
physical files are to contain which logical files. The MOUNT_FS parameter is used in
conjunction with the CDI_DRIVER parameter specifying the one or more PAANPFS drivers.
See the section Standard CDI Definitions for more information.

The MOUNT_FS parameter has two subparameters: the first subparameter maps to the name of
the PFS driver in the CDI_DRIVER parameter and the second subparameter maps to the logical
file name as specified by the application program POSIX calls.

For example:

CDI_DRIVER=(’PFS1,PAANPFS,CONTAINER=CIO://DD:PFS01’)
CDI_DRIVER=(’PFS2,PAANPFS,CONTAINER=CIO://DD:PFS02’)

25

SMARTS POSIX Layer ConfigurationConfiguring the SMARTS Environment

MOUNT_FS=(’PFS1://’,’/usr/’)
MOUNT_FS=(’PFS2://’,’/misc/’)

The above parameters identify two PFS file systems: /usr files map to the physical dataset
specified by PFS1 and /misc files map to the physical dataset specified by PFS2.

To refer to (open) a file in PFS01, issue

f1=open("/usr/data",...)

Any other pathnames are assumed to map to the default protocol file://, which is the native
operating system file system.

MOUNT_FS is not limited to PFS filesystems. If you set up the POSIX parameters as

CDI_DRIVER=(’file,PAAMFSIO’) Native OS/390 File I/O
MOUNT_FS=(’file://’,’/fs/’)

- and then issue

open("/fs/saguk/kxo/reg4/", ...)

- you are referring to sequential dataset SAGUK.KXO.REG4 in the native filesystem.

NETWORKS_FILE

Parameter Use
Possible
Values

Default

NETWORKS_FILE Names the file containing the
TCP/IP network name table.

File name
No network
name table

The file name uses the same URL-like notation as described for the parameter
ENVIRONMENT_VARIABLES.

PROCESS_HEAP_SIZE

Parameter Use
Possible
Values

Default

PROCESS_HEAP_SIZE
Preallocates storage for internal
use.

 1008

Note:
The value may be indicated in bytes, in kilobytes with a "K" modifier, or in megabytes with an
"M" modifier; for example, 320,000 bytes may also be specified as 320K or 32M.

The PROCESS_HEAP_SIZE parameter is used to preallocate a storage area for internal use.

PROTOCOLS_FILE

26

Configuring the SMARTS EnvironmentSMARTS POSIX Layer Configuration

Parameter Use
Possible
Values

Default

PROTOCOLS_FILE Names the file containing the
TCP/IP protocol name table.

File name
No protocol
name table

The file name uses the same URL-like notation as described for the parameter
ENVIRONMENT_VARIABLES.

SECURITY_INTERFACE

Parameter Use Possible Values Default

SECURITY_INTERFACE Identifies the security
subsystem to use.

DEFAULT | ESSG |
EXIT

DEFAULT

Value Description

DEFAULT

Default security actions are taken and no external security system is
consulted. User and group database files must be provided in files
"$SAG_RTS_ETC/passwd" and "$SAG_RTS_ETC/group". The files are
similar to UNIX-based passwd and group files in structure.

EXIT Set security by user exit.

SERVICES_FILE

Parameter Use
Possible
Values

Default

SERVICES_FILE Names the file containing the TCP/IP
services name table.

File name
No services
name table

The file name uses the same URL-like notation as described for the parameter
ENVIRONMENT_VARIABLES.

SYSTEM_ID

Parameter Use
Possible
Values

Default

SYSTEM_ID A name that uniquely identifies the POSIX
server instance.

1-8 character
string

SysName

The specified string is included in all messages issued to the operator during the execution of the
POSIX server (excluding some start-up and termination messages). It may also be used in the
future by the POSIX server system to uniquely identify itself within a machine.

UNSUPPORTED_FUNCTION_LIST

27

SMARTS POSIX Layer ConfigurationConfiguring the SMARTS Environment

Important:
Use this parameter only when requested to do so by your Software AG technical support
representative.

Parameter Use
Possible
Values

Default

UNSUPPORTED_
FUNCTION_LIST

Whether a list of unsupported functions is
written during startup.

YES | NO NO

VSE_PRINTER_SYSNO

Parameter Use
Possible
Values

Default

VSE_PRINTER_SYSNOOptional. Specifies the "cuu" of the VSE
printer to be assigned for SYSLST.

000-FFF FEE

ZAP_LIST

Important:
Use this parameter only when requested to do so by your Software AG technical support
representative.

Parameter Use
Possible
Values

Default

ZAP_LIST
Whether a list of applied ZAPs is written during
startup.

YES | NO NO

When YES is specified, a message is written to the log for each ZAP that has been correctly
applied.

Standard CDI Definitions
SMARTS provides a number of standard definitions for communication driver interfaces (CDIs) to cover
a standard set of functionality in each given environment.

Support for Console Processing (All Environments)

Support for console processing may be activated in any SMARTS environment using this CDI
driver.

This driver may be activated using the following CDI driver definition:

CDI_DRIVER=(’CONSOLE,PAANCNIO’)

There are currently no parameters for this CDI driver.

Support for IBM OS/390 File Subsystem

28

Configuring the SMARTS EnvironmentSMARTS POSIX Layer Configuration

Support for IBM OS/390 File Subsystem may be activated for OS/390 only using this CDI
driver.

The driver may be activated using the following CDI driver definition:

CDI_DRIVER=(’file,PAAMFSIO,BLKSIZE=<nnnnn>,LRECL=<nnnnn>,
RECFM=<fm>,VOLSER=<vvvvvv>,PRIMARY=<nnnn>,SECONDARY=<nnnn>,
DIRECTORY=<nnnn>,PAD=<xxxxx>’)

The following table describes the use of the configuration parameters this driver supports:

29

SMARTS POSIX Layer ConfigurationConfiguring the SMARTS Environment

Parameter Use Possible Values Default

BLKSIZE
Optional. Specifies the default block size to
be used for a dataset created by this driver, if
it is otherwise unspecified.

user-configurable4096

LRECL
Optional. Specifies the default logical record
length to be used for a dataset created by this
driver, if it is otherwise unspecified.

user-configurable4092

RECFM
Optional. Specifies the default record format
to be used for a dataset created by this driver,
if it is otherwise unspecified.

F, FB, FBA, U,
V, VB, VBA

VB

VOLSER

Optional. Specifies the volume serial number
of the default disk pack on which to place a
dataset created by this driver, if it is
otherwise unspecified.

user-configurable
Site
specific

PRIMARY

Optional. Specifies the default primary
quantity value, in cylinders, to be allocated
for a dataset created by this driver, if it is
otherwise unspecified. Refer to IBM
documentation on the DD statement SPACE
parameter for more details on the primary
quantity value.

user-configurable1

SECONDARY

Optional. Specifies the default secondary
quantity value, in cylinders, to be used for a
dataset created by this driver, if it is
otherwise unspecified. Refer to IBM
documentation on the DD statement SPACE
parameter for more details on the secondary
quantity value.

user-configurable1

DIRECTORY

Optional. Specifies the default number of
directory blocks to be allocated for a PDS
created by this driver, if it is otherwise
unspecified. Refer to IBM documentation on
the DD statement SPACE parameter for
more details on the directory value.

user-configurable10

PAD

Optional. In the case of writing to a dataset
of Fixed record length, it may be necessary
to pad out records with a padding character.
This parameter may be used to specify the
padding character.

SPACE, NULL NULL

Support for IBM VSE File Subsystem

Support for the IBM VSE file subsystem may be activated for VSE/ESA only using this CDI
driver.

30

Configuring the SMARTS EnvironmentSMARTS POSIX Layer Configuration

The driver may be activated using the following CDI driver definition:

CDI_DRIVER=(’FILE,PAVVFSIO’, BLKSIZE=<nnnnn>,LRECL=<nnnnn>,
RECFM=<fm>,PAD=<xxxxx>)

The following table describes the use of the single configuration parameter this driver supports:

Parameter Use Possible Values Default

BLKSIZE
Optional. Specifies the default block size to be
used for a dataset created by this driver, if it is
otherwise unspecified.

user-configurable3200

LRECL
Optional. Specifies the default logical record
length to be used for a dataset created by this
driver, if it is otherwise unspecified

user-configurable80

RECFM
Optional. Specifies the default record format to
be used for a dataset created by this driver, if it
is otherwise unspecified.

F, FB, FBA, U,
V, VB, VBA

FB

PAD

Optional. In the case of writing to a dataset of
Fixed record length, it may be necessary to pad
out records with a padding character. This
parameter may be used to specify the padding
character.

SPACE, NULL NULL

Support for FSC BS2000 File Subsystem

Support for Fujitsu Siemens Computers BS2000 File Subsystem may be activated for BS2000
using one of two CDI drivers.

For the main file subsystem use:

CDI_DRIVER=(’file,PA2MFSIO’)

For the shared file subsystem use:

CDI_DRIVER=(’file,PA2SFIO,SIOTSK=<xxxxx>’)

SIOTSK is a mandatory field for the shared file IO task and needs to be assigned a
user-configurable name.

Support for the Portable File System (OS/390)

Access to the files within a portable file system (PFS) is transparent using the standard POSIX
APIs after it has been properly implemented.

Define the CIO CDI driver to support PFS:

CDI_DRIVER=(’CIO,PAANCIO’)

Multiple PFS files are permitted as long as each file has a different protocol name and a
different container.

31

SMARTS POSIX Layer ConfigurationConfiguring the SMARTS Environment

Allocate a container to store each PFS:

LRECL=BLOCKSIZE=4096

Completely initialize the container to contain x‘00’s.

Reference each container by a DDNAME in the JCL.

Establish a CDI driver for each container/PFS. For example:

CDI_DRIVER=(’PFS1,PAANPFS,CACHESIZE=2000,LRECL=4096,CONTAINER=CIO://DD:PFS01’)
CDI_DRIVER=(’PFS2,PAANPFS,CACHESIZE=4000,LRECL=32768,CONTAINER=CIO://DD:PFS02’)

Note that both drivers in the example specify the same module (PAANPFS) but different
protocol names. The protocol name (PFSnn in the example) is a user-defined name up to 8
characters in length.

CACHESIZE

The CACHESIZE subparameter is used to specify the number of records (4k blocks) that will be
cached on platforms whose underlying IO is based on the Container IO model. (All supported
platforms except BS2000). There is an overhead associated with specifying this parameter and
so it should only be used on containers for which a large volume of IO is anticipated. Generally
the bigger the cachesize, the greater the reduction in physical IOs, but as this value is increased,
the law of diminishing returns will apply, so users will have to experiment to determine the
appropriate value for specific containers in a particular application environment.

LRECL

The LRECL subparameter is used to define the logical record size the application will see when
using this container. It is possible to greatly reduce the number of IOs to a device by specifying
this value to be equal to the size at which the application typically does its IO at. e.g. if an
application routinely issues 8k IOs to a particular container, the number of physical IOs can be
almost halved by specifying an LRECL subparameter of 8192 for the CDI driver defining the
protocol for that container. The LRECL subparameter is actioned when the container is first
initialized, so modifying the value after that point will have no effect. The value specified must
be an integral multiple of the physical container LRECL (4k).

Map each container/PFS to a ‘file system’. That is, identify the mapping files, directories, and
subdirectories to the containers/PFSs. For example:

MOUNT_FS=(‘PFS1://‘,’/registry/’)
MOUNT_FS=(‘PFS2://‘,’/tamino/’)

In the above example, all pathnames beginning in /registry/ are mapped to the container/PFS
defined by the protocol PFS1 and all pathnames beginning in /tamino/ are mapped to the
container/PFS defined by the protocol PFS2. All other pathnames are mapped to the default
protocol, which is

file://

- that is, the standard OS/390 file I/O.

32

Configuring the SMARTS EnvironmentSMARTS POSIX Layer Configuration

Support for the Portable File System (VSE/ESA)

The PFS options for VSE are the same as for OS/390. Please also document that PFS uses a
default LRECL etc. of 32K specifically for TAMINO. Other applications should reduce the
LRECL to 4096 or 8192 as this saves dead space in the PFS when short blocks are being written
and ALSO save storage at run-time.

Support for IBM OE TCP/IP Stack (OS/390)

Support for IBM OpenEdition TCP/IP may be activated for z/OS and OS/390 only using this
CDI driver.

The driver may be activated using the following CDI driver definition:

CDI_DRIVER=(’TCPIP,PAAOSOCK)

Notes:

1. The userid where the job is running must have an OE segment defined.
Support for Connectivity Systems TCP/IP Stack (VSE)

Support for the Connectivity Systems TCP/IP stack may be activated for VSE/ESA only using
this CDI driver.

The driver may be activated using the following CDI driver definition:

CDI_DRIVER=(’TCPIP,PAACSOCK,BUFSZ=n,MINQ=n,MAXQ=n’)

The following table describes the configuration parameters this driver supports:

Parameter Use
Possible
Values

Default

BUFSZ
Optional. Specifies the length of the send and receive
buffers.

629 to
65535

1492

MINQ
Optional. Specifies the minimum queue length (or
backlog) that may be specified by an application in a
listen() call.

3 to 32767 5

MAXQ
Optional. Specifies the maximum queue length (or
backlog) that may be specified by an application in a
listen() call.

3 to 32767 30

Note:
If the application specifies a value outside the above range an error does not occur. Instead, the
appropriate minimum or maximum value is used.

The minimum value for BUFSZ is derived from the length of the status information received
from the CSI stack and may change with future releases. The above value relates to Version 1
Release 4.0C.

33

SMARTS POSIX Layer ConfigurationConfiguring the SMARTS Environment

Send and receive buffers will be allocated for each potential connection in a listening socket
queue. Using the MAXQ could reduce the storage usage.

Support for Inter Process Communications Pipes (All Environments)

Support for pipes and named pipes may be activated for all environments using this CDI driver.

The driver may be activated using the following CDI driver definition:

CDI_DRIVER=(’pipe,PAANPIO,BLKSIZE=<nnnn>,NBLKS=<bbbb>’)

The following table describes the configuration parameters this driver supports:

Parameter Use Possible Values Default

BLKSIZE

Optional. Defines the
internal block size
used by the driver in
bytes. This is the size
of each storage
buffer allocated by
the driver for storing
pipe data in. The
buffers are chained
up to the maximum
of <bbbb> entries.

User-configurable 4096

LIMIT

Optional. Defines the
maximum number of
storage buffers to be
allocated for any
open pipe descriptor.

User-configurable 128

Under normal circumstances, no configuration parameter should be required. Use these only
when directed to do so by Software AG’s support personnel.

Notes:

1. Named pipes can only be supported when associated with a mounted PFS container. They
are not supported on native file systems.

2. Normal (unnamed) pipes are not dependent on any file system.

34

Configuring the SMARTS EnvironmentSMARTS POSIX Layer Configuration

Configuration of the SMARTS Server
Environment
Start-up parameters are available to customize the execution of the SMARTS server environment. The
start-up options, whether specified as PARM parameters or entered as statements read from SYSPARM
(OS/390) or SYSIPT (VSE/ESA), are specified as keyword parameters (so-called "sysparms") and must
be entered according to established keyword coding conventions. See Sysparm Format.

The sysparms are interpreted and processed by the PARM-processor module of the SMARTS server
environment when the server environment is initialized.

Note:
For OS/390 and VSE/ESA systems, SMARTS server sysparms may be overridden during the initialization
of the environment without updating the member in the partitioned dataset. For more information about
specifying or overriding sysparm data, see Installation on OS/390 and Installation on VSE/ESA
Installation.

For a standard OS/390 installation, Software AG recommends that you define the size of the installation
by setting the region size and one or both of the parameters

WORKLOAD-AVERAGE
WORKLOAD-MAXIMUM

- and leave the configuration of the following parameters to SMARTS:

ADABAS-BP
BUFFERPOOL
ROLL-BUFFERPOOL
SAVEPOOL
SAVEPOOL-ANY
TASK-GROUP
TIBTAB
THREAD-GROUP
THSIZEABOVE

The following parameters may be specified in a SMARTS server environment only; otherwise, the
following warning message will be issued:

Unknown keyword = xxxxxxxx

- where xxxxxxxx is the keyword that was not recognized.

SMARTS Server Configuration Parameters
ADABAS-BP

Sysparm Use Possible Values Default

ADABAS-BP Used to define the ADABAS buffer pool. see text see text

35

Configuration of the SMARTS Server EnvironmentConfiguring the SMARTS Environment

This buffer pool is used for ADABAS interface work areas, which are acquired outside of the
thread but in the key of the thread. This parameter enables users to determine the key(s) for which buffer
subpools are built and the number of buffers in each subpool.

The format for the value is as follows:

ADABAS-BP=((no,key),(no,key) . . . (no,key))

- where

no
is the number of elements to allocate in the buffer subpool for this key. This must
be greater than 1 and less than or equal to 8192.

key
is the storage protect key in which the buffer subpool will be allocated. This may
be any number between 1 and 15. For OS/390, FACOM, and Hitachi systems, only
keys 8 to 15 should be specified here.

By default, a subpool is built for keys 8 to 15. 8192 bytes are allocated for each subpool and the
number of areas that can exist in each subpool is dependent on the size of the various ADALNK
areas required.

Notes:

1. If an error is encountered in an ADABAS-BP system parameter, the whole line of code is
ignored. Therefore, if there is no following ADABAS-BP specification in the system
parameters, the defaults are in effect.

2. A subsequent specification of the ADABAS-BP system parameter totally overwrites a
previous ADABAS-BP specification. Therefore, if the second specification is incorrect, the
defaults again apply even if the first ADABAS-BP specification is correct.

3. If an ADABAS call is issued in a key for which no subpool is built, the ADABAS call fails
as there is no subpool storage available to satisfy the request.

Example:

ADABAS-BP=((20,9),(50,12),(100,8))

An ADABAS buffer pool is built with three subpools:

the first is built in key 9 and has 20 elements;

the second is built in key C(12) and has 50 elements; and

the third is built in key 8 and has 100 elements.

ADACALLS

Sysparm Use
Possible
Values

Default

ADACALLS The maximum number of incomplete ADABAS calls
from an application before the SMARTS/ ADABAS
interface rolls out the application.

see text 10

36

Configuring the SMARTS EnvironmentConfiguration of the SMARTS Server Environment

Note:
This parameter is ignored if ADAROLL=NO is specified.

The format for the value is as follows:

ADACALLS={ n | (dbid , n) }

- where

n is an integer between 1 and 32767.

dbid is an ADABAS database ID. If ‘dbid’ is specified, ADACALLS applies only to
calls directed to the specified database.

ADADBID

Sysparm Use
Possible
Values

Default Required

ADADBID
The default database ID for
ADABAS.

1-255 none no

The value specified for ADADBID is used if the application program does not supply a specific
database ID in the ADABAS control block. Refer to the ADABAS Operations Manual for a
description of the use of the database ID.

ADALIMIT

Sysparm Use
Possible
Values

Default

ADALIMIT The maximum number of ADABAS calls from an
online transaction before the program is cancelled.

see text 4096

Note:
This parameter is ignored for attached programs.

The format for the value is as follows:

ADALIMIT={ n | (dbid , n) }

- where

n
is an integer between 0 and 32767. If ADALIMIT=0 is specified, this parameter is
ignored (no limit).

dbid is an ADABAS database ID. If ‘dbid’ is specified, ADALIMIT applies only to
calls directed to the specified database.

Specifies the maximum number of ADABAS calls from an online transaction without an
intervening terminal I/O. Programs that exceed this limit are cancelled with error message
ADA0003.

37

Configuration of the SMARTS Server EnvironmentConfiguring the SMARTS Environment

ADAROLL

Sysparm Use
Possible
Values

Default

ADAROLL The number of seconds the SMARTS server
environment will wait for ADABAS calls before it
rolls out the program making the call.

see text see
text

The format for the value is as follows:

ADAROLL={ n | (dbid , n) | ALWAYS | (dbid ,ALWAYS) | NO | (dbid ,NO) }

- where

n
is an integer representing the number of seconds that the SMARTS server
environment will wait.

dbid
is an ADABAS database ID. If ‘dbid’ is specified, ADAROLL applies only
to calls directed to the specified database.

ALWAYS indicates that the program is always eligible for rollout.

NO indicates that the program is never eligible for rollout.

By default, the SMARTS server environment dynamically calculates the optimum value for
each database based on the statistics for the database. The starting value is ALWAYS; i.e., at the
first ADABAS call, the program is always eligible for rollout. Then ADAROLL is calculated
based on the average response time (A) using the following rule:

A < 0.05 sec ADAROLL=0.1

0.05 sec < A < 0.5 sec ADAROLL=2*A

A > 0.5 sec ADAROLL=ALWAYS

Software AG recommends that you allow this parameter to default.

ADASVC

Sysparm Use
Possible
Values

Default

ADASVC The decimal SVC number to be used when
communicating with ADABAS.

see text 13

The format for the value is as follows:

ADASVC={ n | (dbid , n) }

- where

38

Configuring the SMARTS EnvironmentConfiguration of the SMARTS Server Environment

n is an integer 201 to 255 for OS/390, and 1 to 110 for VSE.

dbid is an ADABAS database ID. If ‘dbid’ is specified, ADASVC applies only to calls
directed to this database.

By default (ADASVC=13), the interface to ADABAS version 5 or above is disabled. Programs
issuing a call to ADABAS version 5 or above are terminated with ABEND code U0004.

APPLYMOD

Sysparm Use
Possible
Values

Default Required

APPLYMOD Include or remove a system-wide
modification in/from the SMARTS
session.

91 or 92 none no

This sysparm must be used for FACOM systems. Software AG does not recommend using it in
other operating system environments.

The format for the value is as follows:

APPLYMOD={ n | (n,NO) }

- where

n is the applymod number, in this case either 91 or 92.

n,NO indicates the removal of the ‘n’ applymod.

Possible Applymods

When an error other than an application program error occurs in SMARTS, a dump is normally
scheduled by the SMARTS recovery processing. The dump is written to the SYSUDUMP,
SYSABEND, or SYSMDUMP DD statement using normal OS rules.

Applymod 73: force operating system dump
Specify Applymod=73 only at the request of your support representative to force an
operating system dump prior to recovery after an abend.

This will cause a dump to be taken according to the installation dump options set for
SMARTS. Please note, this Applymod is only required to produce additional diagnostics in
an error situation.

The installation could suffer severe performance problems, and large numbers of dumps
written, if this Applymod is set for any length of time and therefore it should only be set at
the request of your support representative.

Applymod 91: Use the OS SNAP function to write a dump
Applymod 92: Use the IEATDUMP or SDUMP function to write a dump
By default, applymod 92 is in effect, ensuring that unformatted dumps are written to
dynamically allocated datasets according to the dataset name pattern defined by parameter
DUMPDSN= .

39

Configuration of the SMARTS Server EnvironmentConfiguring the SMARTS Environment

This is the dump format expected by Software AG support when you send in a dump for
problem analysis. Also, this is by far the fastest method of writing a dump. If you prefer to get abend
dumps according to your SYSMDUMP, SYSUDUMP, or SYSABEND definitions, specify
APPLYMOD=(92,NO) in order to turn off applymod 92.

If you prefer to produce dumps using the SNAP function, specify APPLYMOD=91 in
addition.

Note:
SMARTS may write dumps for certain non-abend error situations also. These dumps
cannot be written to SYSMDUMP, SYSUDUMP, or SYSABEND, therefore, they are always written
using either IEATDUMP / SDUMP or SNAP.

Note to FACOM users: Software AG recommends that you also use the default (SDUMP).
Software AG support may ask you to format the dump using a batch job before sending it to Software AG.

BUFFERPOOL

Sysparm Use
Possible
Values

Default

BUFFERPOOL Defines the parameter for building the general
buffer pool.

see text see
text

The format for the value is as follows:

BUFFERPOOL={ esize,enum [,expnum] [,loc] }

- where

40

Configuring the SMARTS EnvironmentConfiguration of the SMARTS Server Environment

esize
Required. Determines the size of each individual element in this buffer
subpool. The value is rounded up to the next multiple of 64.

enum
Required. Determines the number of elements of the specified ‘esize’ that will
initially be built in the buffer subpool to be defined.

expnum

Optional. Determines the number of elements by which the buffer subpool is
expanded if the primary ‘enum’ is not sufficient. The default ‘expnum’ value is
"enum/4" with a minimum of "1". The ‘expnum’ value is affected by the
amount of space required for preemptive expansion of the subpool. As not all
requests can expand a subpool when it becomes empty, SMARTS requires
preemptive expansion of the general buffer pool. The space required for
preemptive expansion is calculated internally. When the space available in the
subpool reaches that specified for preemptive expansion, the subpool is
expanded by one quarter of the number of subpool elements, or 10, whichever
is lower. The ‘expnum’ value must be equal to or greater than the figure used
for preemptive subpool expansion. If the specified value is lower, it is forced to
this figure.

loc

Optional. Determines where the buffer subpool elements are to be allocated.
Valid values are BELOW, ANY, and DS:

BELOW
the default; storage is to be allocated below the 16-megabyte line.

ANY
available only on 31-bit-capable systems; storage can be allocated
anywhere within the primary address space and is to be allocated above
the 16-megabyte line under normal circumstances.

DS
available only on ESA-capable systems; storage can be allocated within a
data space.

For each correctly specified BUFFERPOOL parameter, a subpool is built in the general buffer
pool from which all non-specific buffer pool requests are satisfied.

If the BUFFERPOOL parameter is not specified, or is specified one or more times and all are
incorrect in the sense that they are unusable, SMARTS builds a default bufferpool with standard
sizes and numbers of elements based on the size of your installation.

When at least one BUFFERPOOL parameter is accepted as valid, the default is not invoked.
This means that the parameters are not merged.

DUMPDSN

OS/390 only.

41

Configuration of the SMARTS Server EnvironmentConfiguring the SMARTS Environment

Sysparm Use Possible Values Default Required

DUMPDSN A data set name
pattern to be used
for the dump data
set when
SMARTS writes a
dump using the
OS/390
IEATDUMP
service

Any valid data set
name, use of system
symbols is
permitted. See IBM
documentation of
the macro
IEATDUMP,
parameter DSNAD=

If DUMPDSN= is not
specified, SMARTS
uses SDUMP (if
running
APF-authorized) or
SNAP instead of
IEATDUMP,
otherwise no dump
will be taken.

no

Software AG recommends that you do specify this parameter for non-APF authorized
installations in order to avoid SNAP dumps.

For authorized installations, this is not necessary, because SDUMP can be used. SDUMPs are
written to SYS1.DUMPxx (or substitute).

Note:
The data set name must be one that the userID in effect for the SMARTS address space is
permitted to allocate.

Example for fixed dump data set name:

DUMPDSN=DUMP.DATASET.NAME

Example using symbols:

DUMPDSN=DUMP.&jobname ..D&YYMMDD..T&HHMMSS.

EOJ-VER

Sysparm Use
Possible
Values

Default Required

EOJ-VER The indicated character string must be
entered as part of the EOJ operator
command when SMARTS terminates.

1 to
8-character
string

none no

GLOBAL-MAXENQS

Sysparm Use
Possible
Values

Default

GLOBAL-MAXENQS The maximum number of ENQs or LOCKs
that can be outstanding from user programs
in the SMARTS region or partition.

100-32767 1024

INIT-PGM

42

Configuring the SMARTS EnvironmentConfiguration of the SMARTS Server Environment

Sysparm Use
Possible
Values

Default

INIT-PGM Specifies the name(s) of programs to be loaded by
SMARTS at the end of initialization.

see text none

The format for the value is as follows:

INIT-PGM={ name | (name1, name2, ..., namen) }

The programs named are called from the nucleus during startup in the order they are specified,
executed in the SMARTS address space in SMARTS’s key, and deleted after execution. If a
program ABENDs, SMARTS initialization optionally continues.

The programs are internal to Software AG applications that run on SMARTS and are supported
by this parameter for legacy reasons.

Otherwise, it is preferable to use the SERVER statement to obtain control during startup,
termination, and for operator commands, if required.

INSTALLATION

Sysparm Use
Possible
Values

Default

INSTALLATION A 1 to 8-position character string used as an
installation identification name. The name may
not contain a comma.

character
string

MAXENQS

Sysparm Use
Possible
Values

Default

MAXENQS
The maximum number of OS/390 ENQs or VSE
LOCKs that may be outstanding for any one
application program.

1-256 15

Each outstanding ENQ/LOCK resource held occupies 24 bytes plus the length of RNAME in
the general buffer pool while the resource is held (whether it is held as SHR or EXCLUSIVE).

MAXTASKS

Sysparm Use
Possible
Values

Default

MAXTASKS The maximum number of tasks to be
used within a given SMARTS run.

n
254 (OS/390, Facom,
Hitachi) 27 (VSE)

- where ‘n’ is the maximum number of tasks that will be allocated within task groups:

43

Configuration of the SMARTS Server EnvironmentConfiguring the SMARTS Environment

For OS/390 and MSP (FACOM), the number must be greater than zero and less than or
equal to 254. This is a nominal maximum of 256 less the 2 SMARTS system tasks.

For VSE, the number must be greater than zero and less than or equal to 27; that is, VSE
maximum tasks = 32 less 5 SMARTS system tasks.

This parameter should be allowed to default unless there is a valid reason for restricting the
number of tasks to be attached. The only mechanisms for attaching tasks are through the start-up
parameters or through the TASKS operator command.

MESSAGE-ID

Sysparm Use Possible Values Default

MESSAGE-ID Value to be used as the system ID
in the SMARTS message prefix.

x (see below) |
INSTALLATION

patch
character

SMARTS messages have a prefix with the format

pppgggnnnnx

- where

ppp product ID (APS)

ggg message group ID

nnnn message number

x system ID

By default, the patch character is used as the system ID (see the PATCHAR sysparm).

Specify MESSAGE-ID=INSTALLATION to use the installation ID instead of the patch
character as the system ID.

PATCHAR

Sysparm Use
Possible
Values

Default

PATCHAR
Except for an asterisk (*), a character that uniquely
identifies the running SMARTS server environment
within the system.

<char> | * *

- where ‘<char>’ is any valid printable character except an asterisk (*).

If another SMARTS server environment with the same patch character is active, SMARTS is
terminated during initialization.

The default patch character ‘*’ (asterisk) allows multiple SMARTS server environments with
this patch character to be active at the same time.

44

Configuring the SMARTS EnvironmentConfiguration of the SMARTS Server Environment

This character is important in two areas:

1. Every message sent to the console has the patch character of the issuing SMARTS server
environment following the message-identifier; for example, RTSABS0006-2. Before the
sysparms are processed, the default patch character is shown in all messages.

2. Data can be added to the profile system as being specific to a certain system. When the data
is read, the system searches for data relating to the patch character of the running system
before taking the global information. In this way, you can customize your sessions
differently in different SMARTS server environments using the same SMARTS system
dataset.

PROGRAMISD

Sysparm Use
Possible
Values

Default

PROGRAMISD The number of in-storage directory (ISD) slots to
be reserved for SMARTS online programs.

n 100

- where ‘n’ is an integer from 1 to 16 digits in length. The minimum value is 10.

Each program ISD entry occupies 128 bytes of page-fixed storage containing the disk address of
an online program that has been or is executing. For a given ISD, the entries are dynamically
altered to reflect the most current program usage based upon frequency of use.

RESIDENTPAGE

Sysparm Use
Possible
Values

Default

RESIDENTPAGE The name of a program to be loaded and
made resident when SMARTS is initialized.

program-namenone

This parameter is relevant only for Com-plete. In all other environments, all modules are
assumed to be reentrant, and are loaded into the address space automatically at first reference.

The program must be fully reentrant. If it is not marked reentrant, a warning message is issued
on the operator’s console at SMARTS initialization time.

The program must reside in the COMPLIB chain (OS/390) or the LIBDEF search chain
(VSE/ESA) of the SMARTS initialization procedure.

ROLL-BUFFERPOOL

Sysparm Use Possible Values Default

ROLL-
BUFFERPOOL

The size of the fixed roll buffer
pool

(Esize,Eno,Expno,Loc)
not
allocated

45

Configuration of the SMARTS Server EnvironmentConfiguring the SMARTS Environment

The values have the same meaning as for the BUFFERPOOL parameter, except for Loc. The
following values are valid for the ROLL-BUFFERPOOL Loc:

BELOW allocate the roll buffer pool below the 16MB line only

ANY allocate the roll buffer pool either below or above the 16MB line

DS (the default) allocate the roll buffer pool in a data space

SAVEPOOL

Sysparm Use
Possible
Values

Default

SAVEPOOL
The number of "savepool"
entries to be allocated below the
16MB line.

n>=100
calculated by SMARTS
depending on the
configuration

SAVEPOOL is a critical parameter as these areas are used as base level save areas and can
therefore not be expanded. If they are filled, SMARTS terminates abnormally.

SAVEPOOL-ANY

Sysparm Use
Possible
Values

Default

SAVEPOOL-ANY
The number of "savepool"
entries to be allocated above
the 16MB line.

n>=100
calculated by SMARTS
depending on the
configuration

It is important to carefully review the value specified for SAVEPOOL-ANY based on the usage
of the system. When these areas run out, the system can continue to run using savepool entries
allocated below the line; however, this wastes a valuable resource.

SECSYS

Sysparm Use Possible Values Default

SECSYS
An alternate security subsystem to
validate user IDs and passwords
during logon.

NO | RACF | ACF2 |
TOPSECRET |
COMSEC,R|A|T

NO

The specified subsystem is interrogated to determine dataset access authority during utility
processing. This parameter applies to OS/390.

SECSYS-APPL

46

Configuring the SMARTS EnvironmentConfiguration of the SMARTS Server Environment

Sysparm Use
Possible
Values

Default

SECSYS-APPL
The application name to be used for uniquely
identifying this SMARTS nucleus to the external
security system (see SECSYS).

name SAG#RTS

SERVER

Sysparm Use Possible Values Default

SERVER
Information that identifies a server to
SMARTS.

server-informationnone

- where the server information has the format

(serv-id , init-mod , p1 , p2 pn)

serv-id is the ID for this server (1-8 chars)

init-mod is the name of the initialization/termination routine

p1...pn are parameters to be passed to the initialization routines

Specifying the SERVER parameter causes SMARTS to build a server directory entry (SDE) for
the specified server and pass control to the initialization routine specified to initialize the server.

STARTUPPGM

Sysparm Use
Possible
Values

Default

STARTUPPGM
Specifies the name(s) of one or more SMARTS
application programs to be invoked at the end of
initialization.

see text none

The format for the value is as follows:

STARTUPPGM={ name | (name1, name2, ..., namen) }

These programs are scheduled in the order in which they are specified to execute in SMARTS
server threads once the system has initialized. These application programs execute as attached
tasks under SMARTS’s user ID and can use all SMARTS functionality.

Sufficient batch or free TIBs must be available in SMARTS’s TIBTAB to accommodate the
number of programs specified.

Note:
Each process running in a SMARTS server environment has a control block called TIB
associated with it. The TIB contains identifying information such as a one- to five-digit terminal
identification number (TID) and a one- to eight-character terminal information block name
(TIBNAME). Either the TID or TIBNAME may be used to specify a single process.

47

Configuration of the SMARTS Server EnvironmentConfiguring the SMARTS Environment

TASK-GROUP

Sysparm Use Possible Values Default

TASK-GROUP
A group comprising one or
more tasks, available when
SMARTS is started.

(grp,num,priority,maxq)(DEFAULT,num)

- where

grp
Required. The name of the task group being defined. The default task group is
DEFAULT.

num
Required. The number of tasks to be allocated in the task group. This value
must be greater than 1 and less than 254 (OS/390) or 27 (VSE). The default
number of tasks is calculated dynamically based on the size of the installation.

priority

the priority to be assigned to the operating system task, which is attached for
OS/390 and MSP (FACOM) systems only. This parameter is accepted under
VSE, but has no meaning. Valid values are 0-255; the default is 248. ‘255’ is
the priority at which the task-dependent service processor task is running.
Without the ADABAS high performance environment (HPE), this is ‘250’.
While ‘255’ is accepted, the task will in fact only be given a priority of ‘250’.

maxq

The maximum number of TIBs (default 16) expected on this task group’s work
queue at the same time. Under normal circumstances, the default should be
adequate. When there are problems and it is not, a secondary Last In First Out
(LIFO) queue is used so that no work is lost. The normal queue is First In First
Out (FIFO), which ensures that work is done in the order in which it is
received. This is why the LIFO queue is only used as a secondary backup.

Important:
For SMARTS, only the TASK-GROUP DEFAULT is available. Software AG strongly
recommends that you use the default definition. If other products running on SMARTS require
changes to the defaults or allow the definition of their own TASK-GROUPs, that will be
indicated in the relevant documentation.

Notes:

1. A maximum of 8 task groups may be defined.
2. Task-group names are converted to uppercase prior to being processed; therefore, a

parameter entered in lowercase is treated as, and appears in, uppercase letters.
3. If more than one specification appears for a task group, the last valid specification is used.
4. The task group DEFAULT must always exist in the system. If it is not explicitly defined by

the installation, the task group is built by the system with the default values.
5. Note that the total number of tasks to be attached must not exceed the MAXTASKS

specification. This is not checked until the task groups are being built; however, exceeding
the value leads to task-group allocation errors as against parameter errors.

48

Configuring the SMARTS EnvironmentConfiguration of the SMARTS Server Environment

Examples:

TASK-GROUP=(DEFAULT,4)

The DEFAULT task group is allocated with four attached tasks, the default priority, and the
default maximum queue size specification.

TASK-GROUP=(DEFAULT,4,200)
TASK-GROUP=(TASK-GRP,4,150)

The DEFAULT task group is allocated with four attached tasks with a priority of 200 and the
default maximum queue size specification. A second group called TASK-GRP is also allocated
with three attached tasks, a priority of 150, and the default maximum queue size specification.

THREAD-GROUP

Sysparm Use
Possible
Values

Default

THREAD-GROUP
A thread group containing one or more thread
subgroups and threads, to be available when
SMARTS is started.

see below
see
below

The format for the value is

(grp,(sub,size,num,cpu,real,key),...,(sub,size,num,cpu,real,key))

- where

49

Configuration of the SMARTS Server EnvironmentConfiguring the SMARTS Environment

grp Required. The name of the thread group being defined.

sub
The name of the subgroup being defined. If a subgroup name is specified more
than once for the same group, the last valid specification is used when parameter
processing has been completed.

size
Required. The amount of storage in kilobytes to be allocated for each thread
below the line. A valid value is between 8 kilobytes and 1 megabyte.

num

The number of threads to be allocated in the thread subgroup. The value must be
greater than 1 and less than 4096. Generally, this subparameter is required. It can
be omitted for one (and only one) thread subgroup in the address space; in this
case, the number of threads to be allocated for the subgroup is calculated
dynamically by SMARTS based on the size of the installation.

cpu

The CPU time in seconds (default 0.00) that a user program can use in the thread
subgroup for one SMARTS transaction. This value may be entered as an integer
or to a level of hundredths of seconds using the ‘n.nn’ format. If a 0 is provided as
the CPUTIME for a thread subgroup, no CPU limit is placed on programs running
in the associated threads.

real

The wait time in seconds (default 0.00) for the thread subgroup, after which a
message is issued to the console if the user program has not given up control of its
thread. This value may be entered as an integer or to a level of hundredths of
seconds using the ‘n.nn’ format. If 0 is specified, elapsed time is not checked for
the thread subgroup.

key

The key (default M) in which the threads within the subgroups are allocated:

M
The thread keys are a mixture of user keys excluding the key in which
SMARTS is running.

N
No storage protection is implemented and all threads run in the same key as
SMARTS.

Note:
The user may also specify a value in the range 1 to 15 inclusive to allocate a
thread to that key explicitly.

The default value is

THREAD-GROUP=(DEFAULT,($DEFAULT,8,num))

- where "num" is calculated dynamically based on the size of the installation.

Important:
For SMARTS, only the THREAD-GROUP DEFAULT is available. Software AG strongly
recommends that you use the default definition. If other products running on SMARTS require
changes to the defaults or allow the definition of their own THREAD-GROUPs, that will be
indicated in the relevant documentation.

50

Configuring the SMARTS EnvironmentConfiguration of the SMARTS Server Environment

Notes:

1. A maximum of 8 thread groups may be defined.
2. A maximum of 8 subgroups can be allocated per thread group. The subgroups may be

defined on one line or on different lines. When a second THREAD-GROUP statement is
used, the same group name must be specified to relate the subgroup entries.

3. Thread group and subgroup names are converted to uppercase prior to being processed;
therefore, a parameter entered in lowercase is treated as, and appears in, uppercase letters.

4. If more than one specification appears for a thread subgroup of a thread group, the last
valid specification is used.

5. The amount of storage specified on the THSIZEABOVE sysparm is allocated above the
line for each thread defined as a result of the THREAD-GROUP sysparm.

6. The thread group DEFAULT must always exist in the system. If it is not explicitly defined
by the installation, the thread group is built by the system with the default values. If it is
defined, the system ensures that a thread subgroup with a thread size at least as large as that
required by DEFAULT is allocated. If not, the system allocates an additional subgroup for
the group. If too many subgroups have been defined, the last one defined is overwritten to
allow for the default specification.

7. The keyword data is processed from left to right. If more than one thread subgroup is
defined on one line and the line contains an error, even if an error message is issued for the
line, any subgroups processed up to the error are still accepted. That is to say, if the first
subgroup is correct and the second is not, an error message is issued but the first thread
subgroup is defined while the second and subsequent specifications in the same statement
are ignored.

Examples

THREAD-GROUP=(DEFAULT,(SMALUTIL,80,3),(BIGUTIL,300,2,5,9,15))

This allocates the DEFAULT thread group with two subgroups:

the first subgroup called SMALUTIL contains three threads with 84K below the line and
takes the defaults for CPUTIME, REALTIME, and the protectkey to be allocated to the
thread.

the second subgroup called BIGUTIL contains two threads with 304K below the line, has a
maximum CPUTIME of 5 CPU seconds, a REALTIME value of 9 seconds, and each
thread has a storage protectkey of 15.

The following sets of sysparms defines exactly the same thread subgroups:

THREAD-GROUP=(DEFAULT,(SMALUTIL,80,3),(BIGUTIL,300,2,5,9,15))
THREAD-GROUP=(DEFAULT,(SMALUTIL,40,8),(BIGUTIL,300,2,5,9,15))
THREAD-GROUP=(DEFAULT,(SMALUTIL,80,3))

The following sets of sysparms defines exactly the same thread subgroups in two thread groups,
one called DEFAULT and the other called EXTRAGRP:

THREAD-GROUP=(DEFAULT,(SMALUTIL,80,3))
THREAD-GROUP=(EXTRAGRP,(BIGUTIL,300,2,5,9,15))
THREAD-GROUP=(EXTRAGRP,(SMALUTIL,80,3))
THREAD-GROUP=(DEFAULT,(BIGUTIL,300,2,5,9,15))

51

Configuration of the SMARTS Server EnvironmentConfiguring the SMARTS Environment

THSIZEABOVE

Sysparm Use
Possible
Values

Default

THSIZEABOVE
The amount of storage above the 16 MB line, in
multiples of 1024 bytes, to be allocated to each
thread.

n 1024

TIBTAB

Sysparm Use Possible Values Default

TIBTAB
The location and size of the TIB table to be
built when SMARTS is initialized.

DYNnnnnn |
ANYnnnnn

ANYnnnnn

- where

DYN is the table to be built below the 16MB line

ANY is the table to be built above the 16MB line

nnnnn is the number of TIBs. The maximum is 32767. For the default value, "nnnnn" is
calculated dynamically based on the size of the installation.

Note:
Each process running in a SMARTS server environment has a control block called TIB
associated with it. The TIB contains identifying information such as a one- to five-digit terminal
identification number (TID) and a one- to eight-character terminal information block name
(TIBNAME). Either the TID or TIBNAME may be used to specify a single process.

TRACECLASS

Sysparm Use
Possible
Values

Default

TRACECLASS The class of trace event to be included in (or
excluded from) the SMARTS trace table.

class |
(class,OFF)

QTIB

- where ‘class’ is one of the following valid trace classes:

GENERIC used for support purposes

QTIB TIB queue management

OP application program requests

FIXBPOOL fixed-length buffer pool operations

ROLL roll-processing events

RESOURCE resource manager get/free

DISPATCH dispatcher events

52

Configuring the SMARTS EnvironmentConfiguration of the SMARTS Server Environment

The option ‘(class,OFF)’ indicates exclusion of the specified class.

TRACEOPTION

Sysparm Use
Possible
Values

Default

TRACEOPTION The specified trace option is active for this
execution of SMARTS.

option
no options
active

The valid trace options are as follows:

ABEND
The trace continues to run during SMARTS abnormal termination.
(Normally the trace stops recording at the first indication of termination.)
Use only when required by Software AG support personnel.

EXTENDED
Trace processing uses the extended form of the trace record. Use only
when requested by support personnel to find specific information as it
decreases the number of trace records that can be held in a trace buffer.

TRACETABLE

Sysparm Use
Possible
Values

Default

TRACETABLE
The size of the SMARTS trace table, which is used
to trace events occurring within the SMARTS
system.

n | nK 8K

The TRACETABLE sysparm can be a valuable tool for problem resolution.

The minimum size of the trace table is 8K.

TRACETABLE=0 indicates that no tracing is performed.

WORKLOAD-AVERAGE
WORKLOAD-MAXIMUM

The WORKLOAD-AVERAGE parameter specifies a normal workload value, and the
WORKLOAD-MAXIMUM parameter specifies a maximum workload value. SMARTS uses
these values togther with the region sizes above and below the 1bMB line to configure itself.

These parameters are not required, but tuning them may improve performance.

53

Configuration of the SMARTS Server EnvironmentConfiguring the SMARTS Environment

Sysparm Use
Possible
Values

Default

WORKLOAD-AVERAGE

The average
number of
parallel
processes
expected to run
in SMARTS

1-32767
WORKLOAD-MAXIMUM
divided by 4

WORKLOAD-MAXIMUM

The maximum
number of
parallel
processes
expected to run
in SMARTS

1-32767

50 if WORKLOAD-AVERAGE
is not specified, otherwise
WORKLOAD-AVERAGE times
4

Example:

WORKLOAD-AVERAGE=50
WORKLOAD-MAXIMUM=400

54

Configuring the SMARTS EnvironmentConfiguration of the SMARTS Server Environment

SMARTS Global Environment Variables
The SMARTS server system makes it possible for you to specify global environment variables for the
SMARTS address space. These variables are returned to a program issuing the ‘getenv’ function for any
given environment variable and enable a system-wide specification of any given variable. If the same
variable has been set in a local process using the ‘putenv’ function, this is returned and the global version
of the variable is ignored.

File Requirements

File Processing

Examples

File Requirements
For OS/390 environments, the file containing these variables

has a record format of F, FB, or VB.

has a valid record length. Software AG recommends a record length small enough for editors to
handle. A record length of 256 is sufficient for most needs.

is identified on the ENVIRONMENT_VARIABLES configuration parameter of SMARTS.

For VSE/ESA environments, the file containing these variables

is a member in a VSE/ESA library.

is identified on the ENVIRONMENT_VARIABLES configuration parameter of SMARTS.

For other environments, see the documentation for the particular Software AG application product that
uses SMARTS.

File Processing
The contents of the file are processed as follows:

1. Each record in the file is read. Only one global environment variable may be specified per line.

2. The start of the variable name is the first nonblank character in the record.

3. The end of the variable name is the next ‘=’ sign or blank found following the first nonblank.

4. If there is no ‘=’ sign or no data follows the ‘=’ sign, the environment variable is defined but has no
value; that is, it is a null-terminated string with null as the first character.

5. Comments are allowed and are specified by an asterisk (*) in column 1.

55

SMARTS Global Environment VariablesConfiguring the SMARTS Environment

6. To establish the value, SMARTS searches from the end of the record to find the first nonblank. The
data after the equals sign to this point is treated as the variable. It is not possible to specify comments on
these lines. For this reason, Software AG recommends that you not use numbered datasets such as those
produced by TSO/ISPF to avoid interference with the values assigned to environment variables.

7. If the string starts with an apostrophe and ends with an apostrophe, the apostrophes are omitted in the
environment variable but all data between them (including blanks, apostrophes, etc.) form part of the
environment variable.

8. If the string starts with the value "X’" (that is, the character X followed by an apostrophe) and ends
with an apostrophe, the data between them is treated as a hexadecimal value and must therefore be 0 to 9
or A to F. Note that ‘a’ to ‘f’ are treated as invalid hexadecimal data.

9. If the same variable name is specified more than once, the last one in the file is the active value for
the variable after initialization.

Examples
Following are a number of examples of global variables:

MyVariable=This is my variable string

A request to getenv for MyVariable returns a pointer to ‘This is my variable string’ (without apostrophes).

QuotedVariable=‘This is my quoted variable string ’

A request to getenv for QuotedVariable returns a pointer to ‘This is my quoted variable string ’ (without
the apostrophes).

NullVariable=

A request to getenv for NullVariable returns a pointer to ‘’ (without apostrophes).

HexVariable=X‘AABBCCDD’

A request to getenv for HexVariable returns a pointer to the hexadecimal value ‘AABBCCDD’.

NotHexVariable=x‘AABBCCDD’

A request to getenv for NotHexVariable returns a pointer to the string ‘AABBCCDD’ (without the
apostrophes).

56

Configuring the SMARTS EnvironmentSMARTS Global Environment Variables

Configuring Resources for SMARTS
The primary consideration is the amount of storage made available to the POSIX server in the address
space, whether in batch or in the SMARTS server environment. Basically, the larger the address space, the
more requests that can be concurrently serviced using attached tasks and address space storage.

The SMARTS server automatically calculates its optimal configuration based on

the amount of storage available in the address space; and

the expected average and maximum workload as indicated by the WORKLOAD-AVERAGE and
WORKLOAD-MAXIMUM parameters.

For VSE/ESA environments, Software AG recommends that you use the THREAD-GROUP parameter
rather than the WORKLOAD-AVERAGE and WORKLOAD-MAXIMUM parameters.

57

Configuring Resources for SMARTSConfiguring the SMARTS Environment

